Predicting severe radiation-induced oral mucositis in head and neck cancer patients using integrated baseline CT radiomic, dosimetry, and clinical features: A machine learning approach
Purpose: To establish the early prediction models of radiation-induced oral mucositis (RIOM) based on baseline CT-based radiomic features (RFs), dosimetric data, and clinical features by machine learning models for head and neck cancer (HNC) patients. Methods: In this single-center prospective study...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2024-02-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844024008971 |