Enhancing the Transferability of Adversarial Examples with Feature Transformation
The transferability of adversarial examples allows the attacker to fool deep neural networks (DNNs) without knowing any information about the target models. The current input transformation-based method generates adversarial examples by transforming the image in the input space, which implicitly int...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/10/16/2976 |