SuSiE PCA: A scalable Bayesian variable selection technique for principal component analysis

Summary: Latent factor models, like principal component analysis (PCA), provide a statistical framework to infer low-rank representation in various biological contexts. However, feature selection is challenging when this low-rank structure manifests from a sparse subspace. We introduce SuSiE PCA, a...

Full description

Bibliographic Details
Main Authors: Dong Yuan, Nicholas Mancuso
Format: Article
Language:English
Published: Elsevier 2023-11-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004223022587