A Note on Barnette’s Conjecture
Barnette conjectured that each planar, bipartite, cubic, and 3-connected graph is hamiltonian. We prove that this conjecture is equivalent to the statement that there is a constant c > 0 such that each graph G of this class contains a path on at least c|V (G)| vertices.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Zielona Góra
2013-03-01
|
Series: | Discussiones Mathematicae Graph Theory |
Subjects: | |
Online Access: | https://doi.org/10.7151/dmgt.1643 |