In situ potassium and hydrogen ion exchange into a cubic zirconium silicate microporous material.
The selective separation of ions from aqueous systems, and even in the human body, is a crucial to overall environmental management and health. Nanoporous materials are widely known for their selective removal of cations from aqueous media, and therefore have been targeted for use as a pharmaceutica...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2024-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0298661 |