Trajectory Tracking Control Method Based on Adaptive Higher Order Sliding Mode

To resolve the problem of high-precision trajectory tracking control under interference conditions in a missile’s mid-guidance phase, according to the constructed nominal trajectory, an improved adaptive high-order sliding mode trajectory tracking controller (AHSTC) is proposed. In this method, the...

Full description

Bibliographic Details
Main Authors: Jingang He, Yuanjie Meng, Jun You, Jin Zhang, Yuanzhuo Wang, Cheng Zhang
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/16/7955
Description
Summary:To resolve the problem of high-precision trajectory tracking control under interference conditions in a missile’s mid-guidance phase, according to the constructed nominal trajectory, an improved adaptive high-order sliding mode trajectory tracking controller (AHSTC) is proposed. In this method, the open-loop nominal trajectories are established according to the nonlinear programming and Gaussian pseudospectra method. A high-precision trajectory tracking controller is developed by designing a nonlinear sliding mode surface and an adaptive high-order sliding mode approaching law combined with the trajectory tracking nonlinear error model. To verify the effectiveness and superiority of the proposed method, analysis and simulation are carried out through the example of a missile mid-guidance phase tracking control. Compared to the linear quadratic regulator (LQR) and active disturbance rejection controller (ADRC) method, the simulation results show that the proposed AHSTC method shows faster convergence and improved tracking effect. Therefore, the proposed AHSTC method has a good results and engineering application value.
ISSN:2076-3417