Learning Long-Term Temporal Features With Deep Neural Networks for Human Action Recognition
One of challenging tasks in the field of artificial intelligence is the human action recognition. In this paper, we propose a novel long-term temporal feature learning architecture for recognizing human action in video, named Pseudo Recurrent Residual Neural Networks (P-RRNNs), which exploits the re...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8943218/ |