群视角下的多智能体强化学习方法综述
多智能体系统是分布式人工智能领域的前沿研究概念,传统的多智能体强化学习方法主要聚焦群体行为涌现、多智能体合作与协调、智能体间交流与通信、对手建模与预测等主题,但依然面临环境部分可观、对手策略非平稳、决策空间维度高、信用分配难理解等难题,如何设计满足智能体数量规模比较大、适应多类不同应用场景的多智能体强化学习方法是该领域的前沿课题。首先简述了多智能体强化学习的相关研究进展;其次着重从规模可扩展与种群自适应两个视角对多种类、多范式的多智能体学习方法进行了综合概述归纳,系统梳理了集合置换不变性、注意力机制、图与网络理论、平均场理论共四大类规模可扩展学习方法,迁移学习、课程学习、元学习、元博弈共四大类...
Main Author: | |
---|---|
Format: | Article |
Language: | zho |
Published: |
POSTS&TELECOM PRESS Co., LTD
2023-09-01
|
Series: | 智能科学与技术学报 |
Subjects: | |
Online Access: | https://www.infocomm-journal.com/znkx/CN/10.11959/j.issn.2096-6652.202326 |