Switchable-Encoder-Based Self-Supervised Learning Framework for Monocular Depth and Pose Estimation

Monocular depth prediction research is essential for expanding meaning from 2D to 3D. Recent studies have focused on the application of a newly proposed encoder; however, the development within the self-supervised learning framework remains unexplored, an aspect critical for advancing foundational m...

Full description

Bibliographic Details
Main Authors: Junoh Kim, Rui Gao, Jisun Park, Jinsoo Yoon, Kyungeun Cho
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/24/5739
Description
Summary:Monocular depth prediction research is essential for expanding meaning from 2D to 3D. Recent studies have focused on the application of a newly proposed encoder; however, the development within the self-supervised learning framework remains unexplored, an aspect critical for advancing foundational models of 3D semantic interpretation. Addressing the dynamic nature of encoder-based research, especially in performance evaluations for feature extraction and pre-trained models, this research proposes the switchable encoder learning framework (SELF). SELF enhances versatility by enabling the seamless integration of diverse encoders in a self-supervised learning context for depth prediction. This integration is realized through the direct transfer of feature information from the encoder and by standardizing the input structure of the decoder to accommodate various encoder architectures. Furthermore, the framework is extended and incorporated into an adaptable decoder for depth prediction and camera pose learning, employing standard loss functions. Comparative experiments with previous frameworks using the same encoder reveal that SELF achieves a 7% reduction in parameters while enhancing performance. Remarkably, substituting newly proposed algorithms in place of an encoder improves the outcomes as well as significantly decreases the number of parameters by 23%. The experimental findings highlight the ability of SELF to broaden depth factors, such as depth consistency. This framework facilitates the objective selection of algorithms as a backbone for extended research in monocular depth prediction.
ISSN:2072-4292