On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings
For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively. The zero divisor graph $ \Gamma(R) $ of a fin...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2022-04-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://aimspress.com/article/doi/10.3934/math.2022699?viewType=HTML |