Improving crop yield potential: Underlying biological processes and future prospects

Abstract The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant‐derived products. In the coming years, plant‐based research will be among the major drivers ensuring food security and the expansion of the bio‐base...

Full description

Bibliographic Details
Main Authors: Alexandra J. Burgess, Céline Masclaux‐Daubresse, Günter Strittmatter, Andreas P. M. Weber, Samuel Harry Taylor, Jeremy Harbinson, Xinyou Yin, Stephen Long, Matthew J. Paul, Peter Westhoff, Francesco Loreto, Aldo Ceriotti, Vandasue L. R. Saltenis, Mathias Pribil, Philippe Nacry, Lars B. Scharff, Poul Erik Jensen, Bertrand Muller, Jean‐Pierre Cohan, John Foulkes, Peter Rogowsky, Philippe Debaeke, Christian Meyer, Hilde Nelissen, Dirk Inzé, René Klein Lankhorst, Martin A. J. Parry, Erik H. Murchie, Alexandra Baekelandt
Format: Article
Language:English
Published: Wiley 2023-01-01
Series:Food and Energy Security
Subjects:
Online Access:https://doi.org/10.1002/fes3.435
_version_ 1797945060521672704
author Alexandra J. Burgess
Céline Masclaux‐Daubresse
Günter Strittmatter
Andreas P. M. Weber
Samuel Harry Taylor
Jeremy Harbinson
Xinyou Yin
Stephen Long
Matthew J. Paul
Peter Westhoff
Francesco Loreto
Aldo Ceriotti
Vandasue L. R. Saltenis
Mathias Pribil
Philippe Nacry
Lars B. Scharff
Poul Erik Jensen
Bertrand Muller
Jean‐Pierre Cohan
John Foulkes
Peter Rogowsky
Philippe Debaeke
Christian Meyer
Hilde Nelissen
Dirk Inzé
René Klein Lankhorst
Martin A. J. Parry
Erik H. Murchie
Alexandra Baekelandt
author_facet Alexandra J. Burgess
Céline Masclaux‐Daubresse
Günter Strittmatter
Andreas P. M. Weber
Samuel Harry Taylor
Jeremy Harbinson
Xinyou Yin
Stephen Long
Matthew J. Paul
Peter Westhoff
Francesco Loreto
Aldo Ceriotti
Vandasue L. R. Saltenis
Mathias Pribil
Philippe Nacry
Lars B. Scharff
Poul Erik Jensen
Bertrand Muller
Jean‐Pierre Cohan
John Foulkes
Peter Rogowsky
Philippe Debaeke
Christian Meyer
Hilde Nelissen
Dirk Inzé
René Klein Lankhorst
Martin A. J. Parry
Erik H. Murchie
Alexandra Baekelandt
author_sort Alexandra J. Burgess
collection DOAJ
description Abstract The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant‐derived products. In the coming years, plant‐based research will be among the major drivers ensuring food security and the expansion of the bio‐based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
first_indexed 2024-04-10T20:48:14Z
format Article
id doaj.art-9d61f53e10de4f37b7faa91d42257e47
institution Directory Open Access Journal
issn 2048-3694
language English
last_indexed 2024-04-10T20:48:14Z
publishDate 2023-01-01
publisher Wiley
record_format Article
series Food and Energy Security
spelling doaj.art-9d61f53e10de4f37b7faa91d42257e472023-01-24T01:08:22ZengWileyFood and Energy Security2048-36942023-01-01121n/an/a10.1002/fes3.435Improving crop yield potential: Underlying biological processes and future prospectsAlexandra J. Burgess0Céline Masclaux‐Daubresse1Günter Strittmatter2Andreas P. M. Weber3Samuel Harry Taylor4Jeremy Harbinson5Xinyou Yin6Stephen Long7Matthew J. Paul8Peter Westhoff9Francesco Loreto10Aldo Ceriotti11Vandasue L. R. Saltenis12Mathias Pribil13Philippe Nacry14Lars B. Scharff15Poul Erik Jensen16Bertrand Muller17Jean‐Pierre Cohan18John Foulkes19Peter Rogowsky20Philippe Debaeke21Christian Meyer22Hilde Nelissen23Dirk Inzé24René Klein Lankhorst25Martin A. J. Parry26Erik H. Murchie27Alexandra Baekelandt28School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UKUniversité Paris‐Saclay, INRAE, AgroParisTech Institut Jean‐Pierre Bourgin (IJPB) Versailles FranceInstitute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf GermanyInstitute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf GermanyLancaster Environment Centre Lancaster University Lancaster UKLaboratory for Biophysics Wageningen University and Research Wageningen The NetherlandsCentre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The NetherlandsLancaster Environment Centre Lancaster University Lancaster UKPlant Sciences Rothamsted Research Harpenden UKInstitute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf GermanyDepartment of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli ItalyInstitute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan ItalyCopenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen DenmarkCopenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen DenmarkBPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier FranceCopenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen DenmarkDepartment of Food Science University of Copenhagen Copenhagen DenmarkUniversité de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier FranceARVALIS‐Institut du végétal Loireauxence FranceSchool of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UKINRAE UMR Plant Reproduction and Development Lyon FranceToulouse University INRAE, UMR AGIR Toulouse FranceIJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles FranceDepartment of Plant Biotechnology and Bioinformatics Ghent University Ghent BelgiumDepartment of Plant Biotechnology and Bioinformatics Ghent University Ghent BelgiumWageningen Plant Research Wageningen University & Research Wageningen The NetherlandsLancaster Environment Centre Lancaster University Lancaster UKSchool of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UKDepartment of Plant Biotechnology and Bioinformatics Ghent University Ghent BelgiumAbstract The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant‐derived products. In the coming years, plant‐based research will be among the major drivers ensuring food security and the expansion of the bio‐based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.https://doi.org/10.1002/fes3.435crop improvementcrop yieldfood supplynutrient remobilisationorgan growthphotosynthesis
spellingShingle Alexandra J. Burgess
Céline Masclaux‐Daubresse
Günter Strittmatter
Andreas P. M. Weber
Samuel Harry Taylor
Jeremy Harbinson
Xinyou Yin
Stephen Long
Matthew J. Paul
Peter Westhoff
Francesco Loreto
Aldo Ceriotti
Vandasue L. R. Saltenis
Mathias Pribil
Philippe Nacry
Lars B. Scharff
Poul Erik Jensen
Bertrand Muller
Jean‐Pierre Cohan
John Foulkes
Peter Rogowsky
Philippe Debaeke
Christian Meyer
Hilde Nelissen
Dirk Inzé
René Klein Lankhorst
Martin A. J. Parry
Erik H. Murchie
Alexandra Baekelandt
Improving crop yield potential: Underlying biological processes and future prospects
Food and Energy Security
crop improvement
crop yield
food supply
nutrient remobilisation
organ growth
photosynthesis
title Improving crop yield potential: Underlying biological processes and future prospects
title_full Improving crop yield potential: Underlying biological processes and future prospects
title_fullStr Improving crop yield potential: Underlying biological processes and future prospects
title_full_unstemmed Improving crop yield potential: Underlying biological processes and future prospects
title_short Improving crop yield potential: Underlying biological processes and future prospects
title_sort improving crop yield potential underlying biological processes and future prospects
topic crop improvement
crop yield
food supply
nutrient remobilisation
organ growth
photosynthesis
url https://doi.org/10.1002/fes3.435
work_keys_str_mv AT alexandrajburgess improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT celinemasclauxdaubresse improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT gunterstrittmatter improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT andreaspmweber improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT samuelharrytaylor improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT jeremyharbinson improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT xinyouyin improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT stephenlong improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT matthewjpaul improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT peterwesthoff improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT francescoloreto improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT aldoceriotti improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT vandasuelrsaltenis improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT mathiaspribil improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT philippenacry improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT larsbscharff improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT poulerikjensen improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT bertrandmuller improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT jeanpierrecohan improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT johnfoulkes improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT peterrogowsky improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT philippedebaeke improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT christianmeyer improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT hildenelissen improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT dirkinze improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT renekleinlankhorst improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT martinajparry improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT erikhmurchie improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects
AT alexandrabaekelandt improvingcropyieldpotentialunderlyingbiologicalprocessesandfutureprospects