The Development of an Automated Multi-Spit Lamb Rotisserie Machine for Improved Productivity

Innovations in food manufacturing support the agenda for sustainable development goal 9 (SDG9) on industry, innovation and infrastructure. Pursuant to this goal, this study aims to develop an automated multi-spit lamb rotisserie machine that potentially improves the lamb-roasting productivity for sm...

Full description

Bibliographic Details
Main Authors: Xun Wei Chia, Poh Kiat Ng, Robert Jeyakumar Nathan, Jian Ai Yeow, Way Soong Lim, Yu Jin Ng
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/9/8/165
Description
Summary:Innovations in food manufacturing support the agenda for sustainable development goal 9 (SDG9) on industry, innovation and infrastructure. Pursuant to this goal, this study aims to develop an automated multi-spit lamb rotisserie machine that potentially improves the lamb-roasting productivity for small and medium enterprises (SMEs). The conceptualisation involved patents, scholarly literature and product reviews of lamb-roasting devices. The design and analysis are performed using Autodesk Inventor 2019. A scaled-down prototype is developed and tested with (1) roasting output, (2) roasting time and (3) temperature stability tests. The data for test (1) are analysed by comparing the means between control and experimental groups. The data for tests (2) and (3) are analysed using the <i>t</i>-test and Mann–Whitney U test, respectively. Significant differences are observed in tests (1) and (2), with outcomes being in favour of the proposed invention. The prototype cooks 92.27% faster with 700% more meat than a regular lamb roaster. It also cooks at a stable temperature. The cost analysis indicated that this invention could be sold at USD 278 if mass-produced. The design is structurally simple, inexpensive and easy to manufacture, allowing SMEs that rely on traditional spit-based machines to enhance their ability in producing roast lamb.
ISSN:2075-1702