Quantum self-learning Monte Carlo and quantum-inspired Fourier transform sampler
The self-learning metropolis-Hastings algorithm is a powerful Monte Carlo method that, with the help of machine learning, adaptively generates an easy-to-sample probability distribution for approximating a given hard-to-sample distribution. This paper provides a new self-learning Monte Carlo method...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2020-12-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.2.043442 |