Абсолютная сходимость интегралов Фурье и классы Липшица, определяемые с помощью разностей дробного порядка

Получены необходимые и достаточные условия в терминах преобразований Фурье $\hat{f}$ функций $f\in L^1(\mathbb{R})$ для того, чтобы $f$ принадлежали классам Липшица $H_C^{\omega, \alpha}(\mathbb{R})$, $h_C^{\omega, \alpha}(\mathbb{R})$, определяемым с помощью разностей дробного порядка....

Full description

Bibliographic Details
Main Authors: B.I. Peleshenko, T.N. Semirenko
Format: Article
Language:English
Published: Oles Honchar Dnipro National University 2013-08-01
Series:Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Matematika
Subjects:
Online Access:https://vestnmath.dnu.dp.ua/index.php/dumb/article/view/44
_version_ 1818065499638988800
author B.I. Peleshenko
T.N. Semirenko
author_facet B.I. Peleshenko
T.N. Semirenko
author_sort B.I. Peleshenko
collection DOAJ
description Получены необходимые и достаточные условия в терминах преобразований Фурье $\hat{f}$ функций $f\in L^1(\mathbb{R})$ для того, чтобы $f$ принадлежали классам Липшица $H_C^{\omega, \alpha}(\mathbb{R})$, $h_C^{\omega, \alpha}(\mathbb{R})$, определяемым с помощью разностей дробного порядка.
first_indexed 2024-12-10T14:52:52Z
format Article
id doaj.art-9df60a0d56e64456b5e1ae5e0f3d9923
institution Directory Open Access Journal
issn 2312-9557
2518-7996
language English
last_indexed 2024-12-10T14:52:52Z
publishDate 2013-08-01
publisher Oles Honchar Dnipro National University
record_format Article
series Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Matematika
spelling doaj.art-9df60a0d56e64456b5e1ae5e0f3d99232022-12-22T01:44:24ZengOles Honchar Dnipro National UniversityVìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Matematika2312-95572518-79962013-08-0121145152Абсолютная сходимость интегралов Фурье и классы Липшица, определяемые с помощью разностей дробного порядкаB.I. Peleshenko0T.N. Semirenko1Dnipropetrovsk State Agrarian and Economic UniversityDnipropetrovsk State Agrarian and Economic UniversityПолучены необходимые и достаточные условия в терминах преобразований Фурье $\hat{f}$ функций $f\in L^1(\mathbb{R})$ для того, чтобы $f$ принадлежали классам Липшица $H_C^{\omega, \alpha}(\mathbb{R})$, $h_C^{\omega, \alpha}(\mathbb{R})$, определяемым с помощью разностей дробного порядка.https://vestnmath.dnu.dp.ua/index.php/dumb/article/view/44преобразование Фурьеинтеграл Фурьемодуль непрерывностиклассы Липшица
spellingShingle B.I. Peleshenko
T.N. Semirenko
Абсолютная сходимость интегралов Фурье и классы Липшица, определяемые с помощью разностей дробного порядка
Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Matematika
преобразование Фурье
интеграл Фурье
модуль непрерывности
классы Липшица
title Абсолютная сходимость интегралов Фурье и классы Липшица, определяемые с помощью разностей дробного порядка
title_full Абсолютная сходимость интегралов Фурье и классы Липшица, определяемые с помощью разностей дробного порядка
title_fullStr Абсолютная сходимость интегралов Фурье и классы Липшица, определяемые с помощью разностей дробного порядка
title_full_unstemmed Абсолютная сходимость интегралов Фурье и классы Липшица, определяемые с помощью разностей дробного порядка
title_short Абсолютная сходимость интегралов Фурье и классы Липшица, определяемые с помощью разностей дробного порядка
title_sort абсолютная сходимость интегралов фурье и классы липшица определяемые с помощью разностей дробного порядка
topic преобразование Фурье
интеграл Фурье
модуль непрерывности
классы Липшица
url https://vestnmath.dnu.dp.ua/index.php/dumb/article/view/44
work_keys_str_mv AT bipeleshenko absolûtnaâshodimostʹintegralovfurʹeiklassylipšicaopredelâemyespomoŝʹûraznostejdrobnogoporâdka
AT tnsemirenko absolûtnaâshodimostʹintegralovfurʹeiklassylipšicaopredelâemyespomoŝʹûraznostejdrobnogoporâdka