Using a spherical inverted pendulum and statokinesigram for modeling and evaluating quiet standing posture

This paper proposes a new approach to model and analyze erect posture, based on a spherical inverted pendulum which is used to mimic the body posture. The pendulum oscillates in two directions, θ and ϕ , from which the mathematical model was derived and two torque components in oscillation direction...

Full description

Bibliographic Details
Main Author: Hussam K Abdul-Ameer
Format: Article
Language:English
Published: SAGE Publishing 2023-08-01
Series:Advances in Mechanical Engineering
Online Access:https://doi.org/10.1177/16878132231190993
Description
Summary:This paper proposes a new approach to model and analyze erect posture, based on a spherical inverted pendulum which is used to mimic the body posture. The pendulum oscillates in two directions, θ and ϕ , from which the mathematical model was derived and two torque components in oscillation directions were introduced. They are estimated using stabilometric data acquired by a foot pressure mapping system. The model was quantitatively investigated using data from 19 participants, who were first were classified into three groups, according to the foot arch-index. Stabilometric data were then collected and fed into the model to estimate the torque’s components. The components were statistically processed, and the results revealed that the components in direction θ are able to reject intrinsic perturbation. The frequency spectrum of the components in direction ϕ was processed using fast Fourier transform, and the results showed the feasibility of the component in segregating foot deformities. In addition, high-arched foot cases tended to be more stable than other cases because the exerted torque is less. The torque profiles estimated by our model were compared with the profiles derived from a classical inverted pendulum. In most cases, our results showed a significant change ( t -test p  < 0.05).
ISSN:1687-8140