A combination of physics-informed neural networks with the fixed-stress splitting iteration for solving Biot's model
IntroductionBiot's consolidation model in poroelasticity describes the interaction between the fluid and the deformable porous structure. Based on the fixed-stress splitting iterative method proposed by Mikelic et al. (Computat Geosci, 2013), we present a network approach to solve Biot's c...
Main Authors: | Mingchao Cai, Huipeng Gu, Pengxiang Hong, Jingzhi Li |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
Frontiers Media S.A.
2023-08-01
|
סדרה: | Frontiers in Applied Mathematics and Statistics |
נושאים: | |
גישה מקוונת: | https://www.frontiersin.org/articles/10.3389/fams.2023.1206500/full |
פריטים דומים
-
Estimation of the Biot Number Using Genetic Algorithms: Application for the Drying Process
מאת: Krzysztof Górnicki, et al.
יצא לאור: (2019-07-01) -
An alternating iteration algorithm for solving the split equality fixed point problem with L-Lipschitz and quasi-pseudo-contractive mappings
מאת: Meixia Li, et al.
יצא לאור: (2019-09-01) -
Some fixed point iteration procedures
מאת: B. E. Rhoades
יצא לאור: (1991-01-01) -
Anisotropic error estimator for the Stokes–Biot system
מאת: Houédanou Koffi Wilfrid
יצא לאור: (2024-12-01) -
The Influence of Rate of Change in Confining and Pore Pressure on Values of the Modulus of Compressibility of the Rock Skeleton and Biot’s Coefficient
מאת: Andrzej Nowakowski
יצא לאור: (2021-05-01)