On Copson’s inequalities for 0 < p < 1 $0< p<1$
Abstract Let ( λ n ) n ≥ 1 $(\lambda_{n})_{n \geq1}$ be a positive sequence and let Λ n = ∑ i = 1 n λ i $\varLambda_{n}=\sum^{n}_{i=1}\lambda_{i}$ . We study the following Copson inequality for 0 < p < 1 $0< p<1$ , L > p $L>p$ : ∑ n = 1 ∞ ( 1 Λ n ∑ k = n ∞ λ k x k ) p ≥ ( p L − p )...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-03-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-020-02339-3 |