Summary: | Alpha7 nicotinic acetylcholine receptor (α7 nAChR), a hub of the cholinergic anti-inflammatory pathway (CAP), is required for the treatment of inflammatory diseases. HIV-1 infection can upregulate the expression of α7 nAChR in T lymphocytes and affect the role of CAP. However, whether α7 nAChR regulates HIV-1 infection in CD4+ T cells is unclear. In this study, we first found that activation of α7 nAChR by GTS-21 (an α7 nAChR agonist) can promote the transcription of HIV-1 proviral DNA. Then, through transcriptome sequencing analysis, we found that p38 MAPK signaling was enriched in GTS-21 treated HIV-latent T cells. Mechanistically, activation of α7 nAChR could increase reactive oxygen species (ROS), reduce DUSP1 and DUSP6, and consequently enhance the phosphorylation of p38 MAPK. By co-immunoprecipitation and liquid chromatography tandem mass spectrometry, we found that p-p38 MAPK interacted with Lamin B1 (LMNB1). Activation of α7 nAChR increased the binding between p-p38 MAPK and LMNB1. We confirmed that knockdown of MAPK14 significantly downregulated NFATC4, a key activator of HIV-1 transcription. Taken together, activation of the α7 nAChR could trigger ROS/p-p38 MAPK/LMNB1/NFATC4 signaling pathway enhancing HIV-1 transcription. We have revealed an unrecognized mechanism of α7 nAChR-mediated neuroimmune regulation of HIV infection.
|