On the Development of Descriptor-Based Machine Learning Models for Thermodynamic Properties: Part 2—Applicability Domain and Outliers
This article investigates the applicability domain (AD) of machine learning (ML) models trained on high-dimensional data, for the prediction of the ideal gas enthalpy of formation and entropy of molecules via descriptors. The AD is crucial as it describes the space of chemical characteristics in whi...
Autores principales: | , , , |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
MDPI AG
2023-12-01
|
Colección: | Algorithms |
Materias: | |
Acceso en línea: | https://www.mdpi.com/1999-4893/16/12/573 |