Semantic Segmentation of Sorghum Using Hyperspectral Data Identifies Genetic Associations
This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separat...
Hlavní autoři: | Chenyong Miao, Alejandro Pages, Zheng Xu, Eric Rodene, Jinliang Yang, James C. Schnable |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
American Association for the Advancement of Science (AAAS)
2020-01-01
|
Edice: | Plant Phenomics |
On-line přístup: | http://dx.doi.org/10.34133/2020/4216373 |
Podobné jednotky
-
3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves
Autor: Michael C. Tross, a další
Vydáno: (2021-12-01) -
A UAV‐based high‐throughput phenotyping approach to assess time‐series nitrogen responses and identify trait‐associated genetic components in maize
Autor: Eric Rodene, a další
Vydáno: (2022-01-01) -
Fully‐connected semantic segmentation of hyperspectral and LiDAR data
Autor: Hakan Aytaylan, a další
Vydáno: (2019-04-01) -
FUSION OF LIDAR AND HYPERSPECTRAL DATA FOR SEMANTIC SEGMENTATION OF FOREST TREE SPECIES
Autor: E. Tusa, a další
Vydáno: (2020-08-01) -
Image Filtering to Improve Maize Tassel Detection Accuracy Using Machine Learning Algorithms
Autor: Eric Rodene, a další
Vydáno: (2024-03-01)