Semantic Segmentation of Sorghum Using Hyperspectral Data Identifies Genetic Associations
This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separat...
Hauptverfasser: | Chenyong Miao, Alejandro Pages, Zheng Xu, Eric Rodene, Jinliang Yang, James C. Schnable |
---|---|
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
American Association for the Advancement of Science (AAAS)
2020-01-01
|
Schriftenreihe: | Plant Phenomics |
Online Zugang: | http://dx.doi.org/10.34133/2020/4216373 |
Ähnliche Einträge
Ähnliche Einträge
-
3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves
von: Michael C. Tross, et al.
Veröffentlicht: (2021-12-01) -
A UAV‐based high‐throughput phenotyping approach to assess time‐series nitrogen responses and identify trait‐associated genetic components in maize
von: Eric Rodene, et al.
Veröffentlicht: (2022-01-01) -
Fully‐connected semantic segmentation of hyperspectral and LiDAR data
von: Hakan Aytaylan, et al.
Veröffentlicht: (2019-04-01) -
FUSION OF LIDAR AND HYPERSPECTRAL DATA FOR SEMANTIC SEGMENTATION OF FOREST TREE SPECIES
von: E. Tusa, et al.
Veröffentlicht: (2020-08-01) -
Image Filtering to Improve Maize Tassel Detection Accuracy Using Machine Learning Algorithms
von: Eric Rodene, et al.
Veröffentlicht: (2024-03-01)