Semantic Segmentation of Sorghum Using Hyperspectral Data Identifies Genetic Associations
This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separat...
Главные авторы: | Chenyong Miao, Alejandro Pages, Zheng Xu, Eric Rodene, Jinliang Yang, James C. Schnable |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
American Association for the Advancement of Science (AAAS)
2020-01-01
|
Серии: | Plant Phenomics |
Online-ссылка: | http://dx.doi.org/10.34133/2020/4216373 |
Схожие документы
-
3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves
по: Michael C. Tross, и др.
Опубликовано: (2021-12-01) -
A UAV‐based high‐throughput phenotyping approach to assess time‐series nitrogen responses and identify trait‐associated genetic components in maize
по: Eric Rodene, и др.
Опубликовано: (2022-01-01) -
Fully‐connected semantic segmentation of hyperspectral and LiDAR data
по: Hakan Aytaylan, и др.
Опубликовано: (2019-04-01) -
FUSION OF LIDAR AND HYPERSPECTRAL DATA FOR SEMANTIC SEGMENTATION OF FOREST TREE SPECIES
по: E. Tusa, и др.
Опубликовано: (2020-08-01) -
Image Filtering to Improve Maize Tassel Detection Accuracy Using Machine Learning Algorithms
по: Eric Rodene, и др.
Опубликовано: (2024-03-01)