Semantic Segmentation of Sorghum Using Hyperspectral Data Identifies Genetic Associations
This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separat...
Asıl Yazarlar: | Chenyong Miao, Alejandro Pages, Zheng Xu, Eric Rodene, Jinliang Yang, James C. Schnable |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
American Association for the Advancement of Science (AAAS)
2020-01-01
|
Seri Bilgileri: | Plant Phenomics |
Online Erişim: | http://dx.doi.org/10.34133/2020/4216373 |
Benzer Materyaller
-
3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves
Yazar:: Michael C. Tross, ve diğerleri
Baskı/Yayın Bilgisi: (2021-12-01) -
A UAV‐based high‐throughput phenotyping approach to assess time‐series nitrogen responses and identify trait‐associated genetic components in maize
Yazar:: Eric Rodene, ve diğerleri
Baskı/Yayın Bilgisi: (2022-01-01) -
Fully‐connected semantic segmentation of hyperspectral and LiDAR data
Yazar:: Hakan Aytaylan, ve diğerleri
Baskı/Yayın Bilgisi: (2019-04-01) -
FUSION OF LIDAR AND HYPERSPECTRAL DATA FOR SEMANTIC SEGMENTATION OF FOREST TREE SPECIES
Yazar:: E. Tusa, ve diğerleri
Baskı/Yayın Bilgisi: (2020-08-01) -
Image Filtering to Improve Maize Tassel Detection Accuracy Using Machine Learning Algorithms
Yazar:: Eric Rodene, ve diğerleri
Baskı/Yayın Bilgisi: (2024-03-01)