Semantic Segmentation of Sorghum Using Hyperspectral Data Identifies Genetic Associations
This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separat...
Автори: | Chenyong Miao, Alejandro Pages, Zheng Xu, Eric Rodene, Jinliang Yang, James C. Schnable |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
American Association for the Advancement of Science (AAAS)
2020-01-01
|
Серія: | Plant Phenomics |
Онлайн доступ: | http://dx.doi.org/10.34133/2020/4216373 |
Схожі ресурси
Схожі ресурси
-
3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves
за авторством: Michael C. Tross, та інші
Опубліковано: (2021-12-01) -
A UAV‐based high‐throughput phenotyping approach to assess time‐series nitrogen responses and identify trait‐associated genetic components in maize
за авторством: Eric Rodene, та інші
Опубліковано: (2022-01-01) -
Fully‐connected semantic segmentation of hyperspectral and LiDAR data
за авторством: Hakan Aytaylan, та інші
Опубліковано: (2019-04-01) -
FUSION OF LIDAR AND HYPERSPECTRAL DATA FOR SEMANTIC SEGMENTATION OF FOREST TREE SPECIES
за авторством: E. Tusa, та інші
Опубліковано: (2020-08-01) -
Image Filtering to Improve Maize Tassel Detection Accuracy Using Machine Learning Algorithms
за авторством: Eric Rodene, та інші
Опубліковано: (2024-03-01)