Semantic Segmentation of Sorghum Using Hyperspectral Data Identifies Genetic Associations
This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separat...
Những tác giả chính: | Chenyong Miao, Alejandro Pages, Zheng Xu, Eric Rodene, Jinliang Yang, James C. Schnable |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
American Association for the Advancement of Science (AAAS)
2020-01-01
|
Loạt: | Plant Phenomics |
Truy cập trực tuyến: | http://dx.doi.org/10.34133/2020/4216373 |
Những quyển sách tương tự
-
3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves
Bằng: Michael C. Tross, et al.
Được phát hành: (2021-12-01) -
A UAV‐based high‐throughput phenotyping approach to assess time‐series nitrogen responses and identify trait‐associated genetic components in maize
Bằng: Eric Rodene, et al.
Được phát hành: (2022-01-01) -
Fully‐connected semantic segmentation of hyperspectral and LiDAR data
Bằng: Hakan Aytaylan, et al.
Được phát hành: (2019-04-01) -
FUSION OF LIDAR AND HYPERSPECTRAL DATA FOR SEMANTIC SEGMENTATION OF FOREST TREE SPECIES
Bằng: E. Tusa, et al.
Được phát hành: (2020-08-01) -
Image Filtering to Improve Maize Tassel Detection Accuracy Using Machine Learning Algorithms
Bằng: Eric Rodene, et al.
Được phát hành: (2024-03-01)