PP2A‐based triple‐strike therapy overcomes mitochondrial apoptosis resistance in brain cancer cells

Mitochondrial glycolysis and hyperactivity of the phosphatidylinositol 3‐kinase–protein kinase B (AKT) pathway are hallmarks of malignant brain tumors. However, kinase inhibitors targeting AKT (AKTi) or the glycolysis master regulator pyruvate dehydrogenase kinase (PDKi) have failed to provide clini...

Full description

Bibliographic Details
Main Authors: Oxana V. Denisova, Joni Merisaari, Riikka Huhtaniemi, Xi Qiao, Laxman Yetukuri, Mikael Jumppanen, Amanpreet Kaur, Mirva Pääkkönen, Сarina vonSchantz‐Fant, Michael Ohlmeyer, Krister Wennerberg, Otto Kauko, Raphael Koch, Tero Aittokallio, Mikko Taipale, Jukka Westermarck
Format: Article
Language:English
Published: Wiley 2023-09-01
Series:Molecular Oncology
Subjects:
Online Access:https://doi.org/10.1002/1878-0261.13488
_version_ 1827822774297559040
author Oxana V. Denisova
Joni Merisaari
Riikka Huhtaniemi
Xi Qiao
Laxman Yetukuri
Mikael Jumppanen
Amanpreet Kaur
Mirva Pääkkönen
Сarina vonSchantz‐Fant
Michael Ohlmeyer
Krister Wennerberg
Otto Kauko
Raphael Koch
Tero Aittokallio
Mikko Taipale
Jukka Westermarck
author_facet Oxana V. Denisova
Joni Merisaari
Riikka Huhtaniemi
Xi Qiao
Laxman Yetukuri
Mikael Jumppanen
Amanpreet Kaur
Mirva Pääkkönen
Сarina vonSchantz‐Fant
Michael Ohlmeyer
Krister Wennerberg
Otto Kauko
Raphael Koch
Tero Aittokallio
Mikko Taipale
Jukka Westermarck
author_sort Oxana V. Denisova
collection DOAJ
description Mitochondrial glycolysis and hyperactivity of the phosphatidylinositol 3‐kinase–protein kinase B (AKT) pathway are hallmarks of malignant brain tumors. However, kinase inhibitors targeting AKT (AKTi) or the glycolysis master regulator pyruvate dehydrogenase kinase (PDKi) have failed to provide clinical benefits for brain tumor patients. Here, we demonstrate that heterogeneous glioblastoma (GB) and medulloblastoma (MB) cell lines display only cytostatic responses to combined AKT and PDK targeting. Biochemically, the combined AKT and PDK inhibition resulted in the shutdown of both target pathways and priming to mitochondrial apoptosis but failed to induce apoptosis. In contrast, all tested brain tumor cell models were sensitive to a triplet therapy, in which AKT and PDK inhibition was combined with the pharmacological reactivation of protein phosphatase 2A (PP2A) by NZ‐8‐061 (also known as DT‐061), DBK‐1154, and DBK‐1160. We also provide proof‐of‐principle evidence for in vivo efficacy in the intracranial GB and MB models by the brain‐penetrant triplet therapy (AKTi + PDKi + PP2A reactivator). Mechanistically, PP2A reactivation converted the cytostatic AKTi + PDKi response to cytotoxic apoptosis, through PP2A‐elicited shutdown of compensatory mitochondrial oxidative phosphorylation and by increased proton leakage. These results encourage the development of triple‐strike strategies targeting mitochondrial metabolism to overcome therapy tolerance in brain tumors.
first_indexed 2024-03-12T02:02:25Z
format Article
id doaj.art-a2e1d31113f04fc1a661ea35069e7372
institution Directory Open Access Journal
issn 1574-7891
1878-0261
language English
last_indexed 2024-03-12T02:02:25Z
publishDate 2023-09-01
publisher Wiley
record_format Article
series Molecular Oncology
spelling doaj.art-a2e1d31113f04fc1a661ea35069e73722023-09-07T10:57:03ZengWileyMolecular Oncology1574-78911878-02612023-09-011791803182010.1002/1878-0261.13488PP2A‐based triple‐strike therapy overcomes mitochondrial apoptosis resistance in brain cancer cellsOxana V. Denisova0Joni Merisaari1Riikka Huhtaniemi2Xi Qiao3Laxman Yetukuri4Mikael Jumppanen5Amanpreet Kaur6Mirva Pääkkönen7Сarina vonSchantz‐Fant8Michael Ohlmeyer9Krister Wennerberg10Otto Kauko11Raphael Koch12Tero Aittokallio13Mikko Taipale14Jukka Westermarck15Turku Bioscience Centre University of Turku and Åbo Akademi University FinlandTurku Bioscience Centre University of Turku and Åbo Akademi University FinlandTurku Bioscience Centre University of Turku and Åbo Akademi University FinlandTurku Bioscience Centre University of Turku and Åbo Akademi University FinlandTurku Bioscience Centre University of Turku and Åbo Akademi University FinlandTurku Bioscience Centre University of Turku and Åbo Akademi University FinlandTurku Bioscience Centre University of Turku and Åbo Akademi University FinlandTurku Bioscience Centre University of Turku and Åbo Akademi University FinlandInstitute for Molecular Medicine Finland (FIMM), HiLIFE University of Helsinki FinlandIcahn School of Medicine at Mount Sinai New York NY USAInstitute for Molecular Medicine Finland (FIMM), HiLIFE University of Helsinki FinlandTurku Bioscience Centre University of Turku and Åbo Akademi University FinlandUniversity Medical Center Göttingen GermanyInstitute for Molecular Medicine Finland (FIMM), HiLIFE University of Helsinki FinlandDonnelly Centre for Cellular and Biomolecular Research University of Toronto CanadaTurku Bioscience Centre University of Turku and Åbo Akademi University FinlandMitochondrial glycolysis and hyperactivity of the phosphatidylinositol 3‐kinase–protein kinase B (AKT) pathway are hallmarks of malignant brain tumors. However, kinase inhibitors targeting AKT (AKTi) or the glycolysis master regulator pyruvate dehydrogenase kinase (PDKi) have failed to provide clinical benefits for brain tumor patients. Here, we demonstrate that heterogeneous glioblastoma (GB) and medulloblastoma (MB) cell lines display only cytostatic responses to combined AKT and PDK targeting. Biochemically, the combined AKT and PDK inhibition resulted in the shutdown of both target pathways and priming to mitochondrial apoptosis but failed to induce apoptosis. In contrast, all tested brain tumor cell models were sensitive to a triplet therapy, in which AKT and PDK inhibition was combined with the pharmacological reactivation of protein phosphatase 2A (PP2A) by NZ‐8‐061 (also known as DT‐061), DBK‐1154, and DBK‐1160. We also provide proof‐of‐principle evidence for in vivo efficacy in the intracranial GB and MB models by the brain‐penetrant triplet therapy (AKTi + PDKi + PP2A reactivator). Mechanistically, PP2A reactivation converted the cytostatic AKTi + PDKi response to cytotoxic apoptosis, through PP2A‐elicited shutdown of compensatory mitochondrial oxidative phosphorylation and by increased proton leakage. These results encourage the development of triple‐strike strategies targeting mitochondrial metabolism to overcome therapy tolerance in brain tumors.https://doi.org/10.1002/1878-0261.13488AKTapoptosisglioblastomamitochondriaPDKPP2A
spellingShingle Oxana V. Denisova
Joni Merisaari
Riikka Huhtaniemi
Xi Qiao
Laxman Yetukuri
Mikael Jumppanen
Amanpreet Kaur
Mirva Pääkkönen
Сarina vonSchantz‐Fant
Michael Ohlmeyer
Krister Wennerberg
Otto Kauko
Raphael Koch
Tero Aittokallio
Mikko Taipale
Jukka Westermarck
PP2A‐based triple‐strike therapy overcomes mitochondrial apoptosis resistance in brain cancer cells
Molecular Oncology
AKT
apoptosis
glioblastoma
mitochondria
PDK
PP2A
title PP2A‐based triple‐strike therapy overcomes mitochondrial apoptosis resistance in brain cancer cells
title_full PP2A‐based triple‐strike therapy overcomes mitochondrial apoptosis resistance in brain cancer cells
title_fullStr PP2A‐based triple‐strike therapy overcomes mitochondrial apoptosis resistance in brain cancer cells
title_full_unstemmed PP2A‐based triple‐strike therapy overcomes mitochondrial apoptosis resistance in brain cancer cells
title_short PP2A‐based triple‐strike therapy overcomes mitochondrial apoptosis resistance in brain cancer cells
title_sort pp2a based triple strike therapy overcomes mitochondrial apoptosis resistance in brain cancer cells
topic AKT
apoptosis
glioblastoma
mitochondria
PDK
PP2A
url https://doi.org/10.1002/1878-0261.13488
work_keys_str_mv AT oxanavdenisova pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT jonimerisaari pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT riikkahuhtaniemi pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT xiqiao pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT laxmanyetukuri pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT mikaeljumppanen pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT amanpreetkaur pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT mirvapaakkonen pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT sarinavonschantzfant pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT michaelohlmeyer pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT kristerwennerberg pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT ottokauko pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT raphaelkoch pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT teroaittokallio pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT mikkotaipale pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells
AT jukkawestermarck pp2abasedtriplestriketherapyovercomesmitochondrialapoptosisresistanceinbraincancercells