Improved predictive performance of cyanobacterial blooms using a hybrid statistical and deep-learning method
Cyanobacterial harmful algal blooms (CyanoHABs) threaten ecosystem functioning and human health at both regional and global levels, and this threat is likely to become more frequent and severe under climate change. Predictive information can help local water managers to alleviate or manage the adver...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2021-01-01
|
Series: | Environmental Research Letters |
Subjects: | |
Online Access: | https://doi.org/10.1088/1748-9326/ac302d |