ConvLSTM-Att: An Attention-Based Composite Deep Neural Network for Tool Wear Prediction
In order to improve the accuracy of tool wear prediction, an attention-based composite neural network, referred to as the ConvLSTM-Att model (1DCNN-LSTM-Attention), is proposed. Firstly, local multidimensional feature vectors are extracted with the help of a one-dimensional convolutional neural netw...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Machines |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1702/11/2/297 |