Förster resonance energy transfer-based kinase mutation phenotyping reveals an aberrant facilitation of Ca2+/calmodulin-dependent CaMKIIα activity in de novo mutations related to intellectual disability

CaMKIIα plays a fundamental role in learning and memory and is a key determinant of synaptic plasticity. Its kinase activity is regulated by the binding of Ca2+/CaM and by autophosphorylation that operates in an activity-dependent manner. Though many mutations in CAMK2A were linked to a variety of n...

Full description

Bibliographic Details
Main Authors: Hajime Fujii, Hiroyuki Kidokoro, Yayoi Kondo, Masahiro Kawaguchi, Shin-ichiro Horigane, Jun Natsume, Sayaka Takemoto-Kimura, Haruhiko Bito
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-09-01
Series:Frontiers in Molecular Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnmol.2022.970031/full