A FILTRATION ON EQUIVARIANT BOREL–MOORE HOMOLOGY
Let $G/H$ be a homogeneous variety and let $X$ be a $G$-equivariant embedding of $G/H$ such that the number of $G$-orbits in $X$ is finite. We show that the equivariant Borel–Moore homology of $X$ has a filtration with associated graded module the direct sum of the equivariant Borel–Moore homologies...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2019-01-01
|
Series: | Forum of Mathematics, Sigma |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S205050941900015X/type/journal_article |