Time Series Anomaly Detection Using Transformer-Based GAN With Two-Step Masking
Time series anomaly detection is a task that determines whether an unseen signal is normal or abnormal, and it is a crucial function in various real-world applications. Typical approach is to learn normal data representation using generative models, like Generative Adversarial Network (GAN), to disc...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2023-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10164104/ |