Characterization and Monitoring of Antigen-Responsive T Cell Clones Using T Cell Receptor Gene Expression Analysis

High-throughput T-cell receptor repertoire sequencing constitutes a powerful tool to study T cell responses at the clonal level. However, it does not give information on the functional phenotype of the responding clones and lacks a statistical framework for quantitative evaluation. To overcome this,...

Full description

Bibliographic Details
Main Authors: Sabrina Pollastro, Marie de Bourayne, Giulia Balzaretti, Aldo Jongejan, Barbera D. C. van Schaik, Ilse T. G. Niewold, Antoine H. C. van Kampen, Bernard Maillère, Niek de Vries
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-02-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2020.609624/full
_version_ 1819053044191461376
author Sabrina Pollastro
Sabrina Pollastro
Marie de Bourayne
Giulia Balzaretti
Giulia Balzaretti
Aldo Jongejan
Barbera D. C. van Schaik
Ilse T. G. Niewold
Antoine H. C. van Kampen
Bernard Maillère
Niek de Vries
Niek de Vries
author_facet Sabrina Pollastro
Sabrina Pollastro
Marie de Bourayne
Giulia Balzaretti
Giulia Balzaretti
Aldo Jongejan
Barbera D. C. van Schaik
Ilse T. G. Niewold
Antoine H. C. van Kampen
Bernard Maillère
Niek de Vries
Niek de Vries
author_sort Sabrina Pollastro
collection DOAJ
description High-throughput T-cell receptor repertoire sequencing constitutes a powerful tool to study T cell responses at the clonal level. However, it does not give information on the functional phenotype of the responding clones and lacks a statistical framework for quantitative evaluation. To overcome this, we combined datasets from different experiments, all starting from the same blood samples. We used a novel, sensitive, UMI-based protocol to perform repertoire analysis on experimental replicates. Applying established bioinformatic routines for transcriptomic expression analysis we explored the dynamics of antigen-induced clonal expansion after in vitro stimulation, identified antigen-responsive clones, and confirmed their activation status using the expression of activation markers upon antigen re-challenge. We demonstrate that the addition of IL-4 after antigen stimulation drives the expansion of T cell clones encoding unique receptor sequences. We show that our approach represents a scalable, high-throughput immunological tool, which can be used to identify and characterize antigen-responsive T cells at clonal level.
first_indexed 2024-12-21T12:29:28Z
format Article
id doaj.art-a544f06d19f944f1a73b442aee6b2615
institution Directory Open Access Journal
issn 1664-3224
language English
last_indexed 2024-12-21T12:29:28Z
publishDate 2021-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Immunology
spelling doaj.art-a544f06d19f944f1a73b442aee6b26152022-12-21T19:04:05ZengFrontiers Media S.A.Frontiers in Immunology1664-32242021-02-011110.3389/fimmu.2020.609624609624Characterization and Monitoring of Antigen-Responsive T Cell Clones Using T Cell Receptor Gene Expression AnalysisSabrina Pollastro0Sabrina Pollastro1Marie de Bourayne2Giulia Balzaretti3Giulia Balzaretti4Aldo Jongejan5Barbera D. C. van Schaik6Ilse T. G. Niewold7Antoine H. C. van Kampen8Bernard Maillère9Niek de Vries10Niek de Vries11Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, NetherlandsDepartment of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, NetherlandsUniversité Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, FranceDepartment of Clinical Immunology & Rheumatology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, NetherlandsDepartment of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, NetherlandsDepartment of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Infection & Immunity Institute (AIII), Amsterdam Public Health Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, NetherlandsDepartment of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Infection & Immunity Institute (AIII), Amsterdam Public Health Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, NetherlandsDepartment of Clinical Immunology & Rheumatology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, NetherlandsDepartment of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Infection & Immunity Institute (AIII), Amsterdam Public Health Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, NetherlandsUniversité Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, FranceDepartment of Clinical Immunology & Rheumatology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, NetherlandsDepartment of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, NetherlandsHigh-throughput T-cell receptor repertoire sequencing constitutes a powerful tool to study T cell responses at the clonal level. However, it does not give information on the functional phenotype of the responding clones and lacks a statistical framework for quantitative evaluation. To overcome this, we combined datasets from different experiments, all starting from the same blood samples. We used a novel, sensitive, UMI-based protocol to perform repertoire analysis on experimental replicates. Applying established bioinformatic routines for transcriptomic expression analysis we explored the dynamics of antigen-induced clonal expansion after in vitro stimulation, identified antigen-responsive clones, and confirmed their activation status using the expression of activation markers upon antigen re-challenge. We demonstrate that the addition of IL-4 after antigen stimulation drives the expansion of T cell clones encoding unique receptor sequences. We show that our approach represents a scalable, high-throughput immunological tool, which can be used to identify and characterize antigen-responsive T cells at clonal level.https://www.frontiersin.org/articles/10.3389/fimmu.2020.609624/fullT-cell receptoradaptive immune receptor repertoireT cell responsesnext generation sequencingbioinformaticsimmunoinformatics
spellingShingle Sabrina Pollastro
Sabrina Pollastro
Marie de Bourayne
Giulia Balzaretti
Giulia Balzaretti
Aldo Jongejan
Barbera D. C. van Schaik
Ilse T. G. Niewold
Antoine H. C. van Kampen
Bernard Maillère
Niek de Vries
Niek de Vries
Characterization and Monitoring of Antigen-Responsive T Cell Clones Using T Cell Receptor Gene Expression Analysis
Frontiers in Immunology
T-cell receptor
adaptive immune receptor repertoire
T cell responses
next generation sequencing
bioinformatics
immunoinformatics
title Characterization and Monitoring of Antigen-Responsive T Cell Clones Using T Cell Receptor Gene Expression Analysis
title_full Characterization and Monitoring of Antigen-Responsive T Cell Clones Using T Cell Receptor Gene Expression Analysis
title_fullStr Characterization and Monitoring of Antigen-Responsive T Cell Clones Using T Cell Receptor Gene Expression Analysis
title_full_unstemmed Characterization and Monitoring of Antigen-Responsive T Cell Clones Using T Cell Receptor Gene Expression Analysis
title_short Characterization and Monitoring of Antigen-Responsive T Cell Clones Using T Cell Receptor Gene Expression Analysis
title_sort characterization and monitoring of antigen responsive t cell clones using t cell receptor gene expression analysis
topic T-cell receptor
adaptive immune receptor repertoire
T cell responses
next generation sequencing
bioinformatics
immunoinformatics
url https://www.frontiersin.org/articles/10.3389/fimmu.2020.609624/full
work_keys_str_mv AT sabrinapollastro characterizationandmonitoringofantigenresponsivetcellclonesusingtcellreceptorgeneexpressionanalysis
AT sabrinapollastro characterizationandmonitoringofantigenresponsivetcellclonesusingtcellreceptorgeneexpressionanalysis
AT mariedebourayne characterizationandmonitoringofantigenresponsivetcellclonesusingtcellreceptorgeneexpressionanalysis
AT giuliabalzaretti characterizationandmonitoringofantigenresponsivetcellclonesusingtcellreceptorgeneexpressionanalysis
AT giuliabalzaretti characterizationandmonitoringofantigenresponsivetcellclonesusingtcellreceptorgeneexpressionanalysis
AT aldojongejan characterizationandmonitoringofantigenresponsivetcellclonesusingtcellreceptorgeneexpressionanalysis
AT barberadcvanschaik characterizationandmonitoringofantigenresponsivetcellclonesusingtcellreceptorgeneexpressionanalysis
AT ilsetgniewold characterizationandmonitoringofantigenresponsivetcellclonesusingtcellreceptorgeneexpressionanalysis
AT antoinehcvankampen characterizationandmonitoringofantigenresponsivetcellclonesusingtcellreceptorgeneexpressionanalysis
AT bernardmaillere characterizationandmonitoringofantigenresponsivetcellclonesusingtcellreceptorgeneexpressionanalysis
AT niekdevries characterizationandmonitoringofantigenresponsivetcellclonesusingtcellreceptorgeneexpressionanalysis
AT niekdevries characterizationandmonitoringofantigenresponsivetcellclonesusingtcellreceptorgeneexpressionanalysis