An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment
In practical applications, learning models that can perform well even when the data distribution is different from the training set are essential and meaningful. Such problems are often referred to as out-of-distribution (OOD) generalization problems. In this paper, we propose a method for OOD gener...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-12-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/12/1/85 |