Kernel Parameter Selection for Support Vector Machine Classification

Parameter selection for kernel functions is important to the robust classification performance of a support vector machine (SVM). This paper introduces a parameter selection method for kernel functions in SVM. The proposed method tries to estimate the class separability by cosine similarity in the k...

Description complète

Détails bibliographiques
Auteurs principaux: Zhiliang Liu, Hongbing Xu
Format: Article
Langue:English
Publié: SAGE Publishing 2014-06-01
Collection:Journal of Algorithms & Computational Technology
Accès en ligne:https://doi.org/10.1260/1748-3018.8.2.163