Kernel Parameter Selection for Support Vector Machine Classification

Parameter selection for kernel functions is important to the robust classification performance of a support vector machine (SVM). This paper introduces a parameter selection method for kernel functions in SVM. The proposed method tries to estimate the class separability by cosine similarity in the k...

Полное описание

Библиографические подробности
Главные авторы: Zhiliang Liu, Hongbing Xu
Формат: Статья
Язык:English
Опубликовано: SAGE Publishing 2014-06-01
Серии:Journal of Algorithms & Computational Technology
Online-ссылка:https://doi.org/10.1260/1748-3018.8.2.163