Kernel Parameter Selection for Support Vector Machine Classification

Parameter selection for kernel functions is important to the robust classification performance of a support vector machine (SVM). This paper introduces a parameter selection method for kernel functions in SVM. The proposed method tries to estimate the class separability by cosine similarity in the k...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Zhiliang Liu, Hongbing Xu
Materialtyp: Artikel
Språk:English
Publicerad: SAGE Publishing 2014-06-01
Serie:Journal of Algorithms & Computational Technology
Länkar:https://doi.org/10.1260/1748-3018.8.2.163