FUZ-SMO: A fuzzy slime mould optimizer for mitigating false alarm rates in the classification of underwater datasets using deep convolutional neural networks
Sonar sound datasets are of significant importance in the domains of underwater surveillance and marine research as they enable experts to discern intricate patterns within the depths of the water. Nevertheless, the task of classifying sonar sound datasets continues to pose significant challenges. I...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2024-04-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844024047121 |