Discovering symmetry invariants and conserved quantities by interpreting siamese neural networks

We introduce interpretable siamese neural networks (SNNs) for similarity detection to the field of theoretical physics. More precisely, we apply SNNs to events in special relativity, the transformation of electromagnetic fields, and the motion of particles in a central potential. In these examples,...

Description complète

Détails bibliographiques
Auteurs principaux: Sebastian J. Wetzel, Roger G. Melko, Joseph Scott, Maysum Panju, Vijay Ganesh
Format: Article
Langue:English
Publié: American Physical Society 2020-09-01
Collection:Physical Review Research
Accès en ligne:http://doi.org/10.1103/PhysRevResearch.2.033499