Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in L∞L^{\infty}
Given the supremal functional E∞(u,Ω′)=esssupΩ′H(⋅,Du){E_{\infty}(u,\Omega^{\prime})=\operatornamewithlimits{ess\,sup}_{\Omega^{% \prime}}H(\,\cdot\,,\mathrm{D}u)}, defined on Wloc1,∞(Ω,ℝN){W^{1,\infty}_{\mathrm{loc}}(\Omega,\mathbb{R}^{N})}, with Ω′⋐Ω⊆ℝn{\Omega^{\prime}\Subset\Omega\subseteq\...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2017-06-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2016-0164 |