Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in L∞L^{\infty}

Given the supremal functional E∞⁢(u,Ω′)=ess⁢supΩ′⁡H⁢(⋅,D⁢u){E_{\infty}(u,\Omega^{\prime})=\operatornamewithlimits{ess\,sup}_{\Omega^{% \prime}}H(\,\cdot\,,\mathrm{D}u)}, defined on Wloc1,∞⁢(Ω,ℝN){W^{1,\infty}_{\mathrm{loc}}(\Omega,\mathbb{R}^{N})}, with Ω′⋐Ω⊆ℝn{\Omega^{\prime}\Subset\Omega\subseteq\...

Full description

Bibliographic Details
Main Author: Katzourakis Nikos
Format: Article
Language:English
Published: De Gruyter 2017-06-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2016-0164