Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in L∞L^{\infty}

Given the supremal functional E∞⁢(u,Ω′)=ess⁢supΩ′⁡H⁢(⋅,D⁢u){E_{\infty}(u,\Omega^{\prime})=\operatornamewithlimits{ess\,sup}_{\Omega^{% \prime}}H(\,\cdot\,,\mathrm{D}u)}, defined on Wloc1,∞⁢(Ω,ℝN){W^{1,\infty}_{\mathrm{loc}}(\Omega,\mathbb{R}^{N})}, with Ω′⋐Ω⊆ℝn{\Omega^{\prime}\Subset\Omega\subseteq\...

Full description

Bibliographic Details
Main Author: Katzourakis Nikos
Format: Article
Language:English
Published: De Gruyter 2017-06-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2016-0164
_version_ 1819290869136621568
author Katzourakis Nikos
author_facet Katzourakis Nikos
author_sort Katzourakis Nikos
collection DOAJ
description Given the supremal functional E∞⁢(u,Ω′)=ess⁢supΩ′⁡H⁢(⋅,D⁢u){E_{\infty}(u,\Omega^{\prime})=\operatornamewithlimits{ess\,sup}_{\Omega^{% \prime}}H(\,\cdot\,,\mathrm{D}u)}, defined on Wloc1,∞⁢(Ω,ℝN){W^{1,\infty}_{\mathrm{loc}}(\Omega,\mathbb{R}^{N})}, with Ω′⋐Ω⊆ℝn{\Omega^{\prime}\Subset\Omega\subseteq\mathbb{R}^{n}}, we identify a class of vectorial rank-one absolute minimisers by proving a statement slightly stronger than the next claim: vectorial solutions of the Hamilton–Jacobi equation H⁢(⋅,D⁢u)=c{H(\,\cdot\,,\mathrm{D}u)=c} are rank-one absolute minimisers if they are C1{C^{1}}. Our minimality notion is a generalisation of the classical L∞{L^{\infty}} variational principle of Aronsson to the vector case, and emerged in earlier work of the author. The assumptions are minimal, requiring only continuity and rank-one convexity of the level sets.
first_indexed 2024-12-24T03:29:35Z
format Article
id doaj.art-a6aa0ccd89e8475c9e7f4090f3672821
institution Directory Open Access Journal
issn 2191-9496
2191-950X
language English
last_indexed 2024-12-24T03:29:35Z
publishDate 2017-06-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj.art-a6aa0ccd89e8475c9e7f4090f36728212022-12-21T17:17:15ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2017-06-018150851610.1515/anona-2016-0164anona-2016-0164Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in L∞L^{\infty}Katzourakis Nikos0Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, ReadingRG6 6AX, Berkshire, United KingdomGiven the supremal functional E∞⁢(u,Ω′)=ess⁢supΩ′⁡H⁢(⋅,D⁢u){E_{\infty}(u,\Omega^{\prime})=\operatornamewithlimits{ess\,sup}_{\Omega^{% \prime}}H(\,\cdot\,,\mathrm{D}u)}, defined on Wloc1,∞⁢(Ω,ℝN){W^{1,\infty}_{\mathrm{loc}}(\Omega,\mathbb{R}^{N})}, with Ω′⋐Ω⊆ℝn{\Omega^{\prime}\Subset\Omega\subseteq\mathbb{R}^{n}}, we identify a class of vectorial rank-one absolute minimisers by proving a statement slightly stronger than the next claim: vectorial solutions of the Hamilton–Jacobi equation H⁢(⋅,D⁢u)=c{H(\,\cdot\,,\mathrm{D}u)=c} are rank-one absolute minimisers if they are C1{C^{1}}. Our minimality notion is a generalisation of the classical L∞{L^{\infty}} variational principle of Aronsson to the vector case, and emerged in earlier work of the author. The assumptions are minimal, requiring only continuity and rank-one convexity of the level sets.https://doi.org/10.1515/anona-2016-0164rank-one absolute minimisersvectorial hamilton–jacobi equationviscosity solutions.35d99 35d40 35j47 35j92 35j70 35j99
spellingShingle Katzourakis Nikos
Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in L∞L^{\infty}
Advances in Nonlinear Analysis
rank-one absolute minimisers
vectorial hamilton–jacobi equation
viscosity solutions.
35d99
35d40
35j47
35j92
35j70
35j99
title Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in L∞L^{\infty}
title_full Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in L∞L^{\infty}
title_fullStr Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in L∞L^{\infty}
title_full_unstemmed Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in L∞L^{\infty}
title_short Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in L∞L^{\infty}
title_sort solutions of vectorial hamilton jacobi equations are rank one absolute minimisers in l∞l infty
topic rank-one absolute minimisers
vectorial hamilton–jacobi equation
viscosity solutions.
35d99
35d40
35j47
35j92
35j70
35j99
url https://doi.org/10.1515/anona-2016-0164
work_keys_str_mv AT katzourakisnikos solutionsofvectorialhamiltonjacobiequationsarerankoneabsoluteminimisersinllinfty