Reassessment of amphetamine- and phencyclidine-induced locomotor hyperactivity as a model of psychosis-like behavior in rats

Locomotor hyperactivity induced by psychotomimetic drugs, such as amphetamine and phencyclidine, is widely used as an animal model of psychosis-like behaviour and is commonly attributed to an interaction with dopamine release and N-methyl-D-aspartate (NMDA) receptors, respectively. However, what...

Full description

Bibliographic Details
Main Authors: Snezana Kusljic, Maarten van den Buuse, Andrea Gogos
Format: Article
Language:English
Published: IMR Press 2022-01-01
Series:Journal of Integrative Neuroscience
Subjects:
Online Access:https://article.imrpress.com/journal/JIN/21/1/10.31083/j.jin2101017/1757-448X-21-1-017.pdf
Description
Summary:Locomotor hyperactivity induced by psychotomimetic drugs, such as amphetamine and phencyclidine, is widely used as an animal model of psychosis-like behaviour and is commonly attributed to an interaction with dopamine release and N-methyl-D-aspartate (NMDA) receptors, respectively. However, what is often not sufficiently taken into account is that the pharmacological profile of these drugs is complex and may involve other neurotransmitter/receptor systems. Therefore, this study aimed to assess the effect of three antagonists targeting different monoamine pathways on amphetamine- and phencyclidine-induced locomotor hyperactivity. A total of 32 rats were pre-treated with antagonists affecting dopaminergic, noradrenergic and serotonergic transmission: haloperidol (0.05 mg/kg), prazosin (2 mg/kg) and ritanserin (1 mg/kg), respectively. After 30 min of spontaneous activity, rats were injected with amphetamine (0.5 mg/kg) or phencyclidine (2.5 mg/kg) and distance travelled, stereotypy and rearing recorded in photocell cages over 90 min. Pre-treatment with haloperidol or prazosin both reduced amphetamine-induced hyperactivity although pre-treatment with ritanserin had only a partial effect. None of the pre-treatments significantly altered the hyperlocomotion effects of phencyclidine. These findings suggest that noradrenergic as well as dopaminergic neurotransmission is critical for amphetamine-induced locomotor hyperactivity. Hyperlocomotion effects of phencyclidine are dependent on other factors, most likely NMDA receptor antagonism. These results help to interpret psychotomimetic drug-induced locomotor hyperactivity as an experimental model of psychosis.
ISSN:0219-6352