Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN) in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU) devices to convolutional n...
Päätekijät: | Tayfun Gokmen, Murat Onen, Wilfried Haensch |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
Frontiers Media S.A.
2017-10-01
|
Sarja: | Frontiers in Neuroscience |
Aiheet: | |
Linkit: | http://journal.frontiersin.org/article/10.3389/fnins.2017.00538/full |
Samankaltaisia teoksia
-
Training LSTM Networks With Resistive Cross-Point Devices
Tekijä: Tayfun Gokmen, et al.
Julkaistu: (2018-10-01) -
MR-PIPA: An Integrated Multilevel RRAM (HfO<sub><italic>x</italic></sub>)-Based Processing-In-Pixel Accelerator
Tekijä: Minhaz Abedin, et al.
Julkaistu: (2022-01-01) -
Reliable and Energy-Efficient Diabetic Retinopathy Screening Using Memristor-Based Neural Networks
Tekijä: Sumit Diware, et al.
Julkaistu: (2024-01-01) -
Design implementations of ternary logic systems: A critical review
Tekijä: Furqan Zahoor, et al.
Julkaistu: (2024-09-01) -
Accurate Inference With Inaccurate RRAM Devices: A Joint Algorithm-Design Solution
Tekijä: Gouranga Charan, et al.
Julkaistu: (2020-01-01)