Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN) in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU) devices to convolutional n...
Asıl Yazarlar: | Tayfun Gokmen, Murat Onen, Wilfried Haensch |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
Frontiers Media S.A.
2017-10-01
|
Seri Bilgileri: | Frontiers in Neuroscience |
Konular: | |
Online Erişim: | http://journal.frontiersin.org/article/10.3389/fnins.2017.00538/full |
Benzer Materyaller
-
Training LSTM Networks With Resistive Cross-Point Devices
Yazar:: Tayfun Gokmen, ve diğerleri
Baskı/Yayın Bilgisi: (2018-10-01) -
MR-PIPA: An Integrated Multilevel RRAM (HfO<sub><italic>x</italic></sub>)-Based Processing-In-Pixel Accelerator
Yazar:: Minhaz Abedin, ve diğerleri
Baskı/Yayın Bilgisi: (2022-01-01) -
Reliable and Energy-Efficient Diabetic Retinopathy Screening Using Memristor-Based Neural Networks
Yazar:: Sumit Diware, ve diğerleri
Baskı/Yayın Bilgisi: (2024-01-01) -
Design implementations of ternary logic systems: A critical review
Yazar:: Furqan Zahoor, ve diğerleri
Baskı/Yayın Bilgisi: (2024-09-01) -
Accurate Inference With Inaccurate RRAM Devices: A Joint Algorithm-Design Solution
Yazar:: Gouranga Charan, ve diğerleri
Baskı/Yayın Bilgisi: (2020-01-01)