Analytical Solutions for a New Form of the Generalized <i>q</i>-Deformed Sinh–Gordon Equation:<inline-formula><math display="inline"><semantics><mrow><mo> </mo><mfrac><mrow><msup><mo mathvariant="bold">∂</mo><mn mathvariant="bold">2</mn></msup><mi mathvariant="bold-italic">u</mi></mrow><mrow><mo mathvariant="bold">∂</mo><mi mathvariant="bold-italic">z</mi><mo mathvariant="bold">∂</mo><mi mathvariant="bold-italic">ζ</mi></mrow></mfrac><mo mathvariant="bold">=</mo><msup><mi mathvariant="bold-italic">e</mi><mrow><mi mathvariant="bold-italic">α</mi><mi mathvariant="bold-italic">u</mi></mrow></msup><msup><mrow><mo mathvariant="bold">[</mo><mi mathvariant="bold-italic">s</mi><mi mathvariant="bold-italic">i</mi><mi mathvariant="bold-italic">n</mi><msub><mi mathvariant="bold-italic">h</mi><mi mathvariant="bold-italic">q</mi></msub><mrow><mo mathvariant="bold">(</mo><msup><mi mathvariant="bold-italic">u</mi><mi mathvariant="bold-italic">γ</mi></msup><mo mathvariant="bold">)</mo></mrow><mo mathvariant="bold">]</mo></mrow><mi mathvariant="bold-italic">p</mi></msup><mo mathvariant="bold">−</mo><mi mathvariant="bold-italic">δ</mi></mrow></semantics></math></inline-formula>
In this article, a new version of the generalized <i>q</i>-deformed Sinh–Gordon equation is presented, and analytical solutions are developed for specific parameter sets using those equations. There is a possibility that the new equation can be used to model physical systems that have br...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/15/2/470 |