Машинне навчання під час діагностування і моніторингу сонного апное

Розглянуто та проаналізовано використання сучасних підходів машинного навчання для визначення рівня тяжкості апное уві сні шляхом локалізації епізодів апное в часі та передбачення наступних епізодів апное. Продемонстровано, що за допомогою сигналів від доступних і портативних сенсорів можна з відно...

Full description

Bibliographic Details
Main Authors: Dmytro Tkachenko, Ihor Krush, Vitalii Mykhalko, Anatolii Petrenko
Format: Article
Language:Ukrainian
Published: Igor Sikorsky Kyiv Polytechnic Institute 2020-12-01
Series:Sistemnì Doslìdženâ ta Informacìjnì Tehnologìï
Subjects:
Online Access:http://journal.iasa.kpi.ua/article/view/228369
Description
Summary:Розглянуто та проаналізовано використання сучасних підходів машинного навчання для визначення рівня тяжкості апное уві сні шляхом локалізації епізодів апное в часі та передбачення наступних епізодів апное. Продемонстровано, що за допомогою сигналів від доступних і портативних сенсорів можна з відносно високою точністю розв’язувати типові задачі з визначення апное уві сні, а також розглянуто основні публічні набори даних для тренування відповідних моделей машинного навчання та варіанти їх можливого використання. Зокрема, доведено, що застосування глибинного навчання може підвищити точність класифікації, локалізації та передбачення апное, особливо за допомогою використання більш складних моделей глибинного навчання, які враховують мультимодальні дані від декількох сенсорів.
ISSN:1681-6048
2308-8893