Hollow Cathode Gas Flow Sputtering of Nickel Oxide Thin Films for Hole‐Transport Layer Application in Perovskite Solar Cells

Nickel oxide (NiO1+δ) is a versatile material used in various fields such as optoelectronics, spintronics, electrochemistry, and catalysis which is prepared with a wide range of deposition methods. Herein, for the deposition of NiO1+δ films, the reactive gas flow sputtering (GFS) process using a met...

Full description

Bibliographic Details
Main Authors: Sri Hari Bharath Vinoth Kumar, Ruslan Muydinov, Natalia Maticiuc, Nivin Alktash, Marin Rusu, Bertwin Bilgrim Otto Seibertz, Hans Köbler, Antonio Abate, Thomas Unold, Iver Lauermann, Bernd Szyszka
Format: Article
Language:English
Published: Wiley-VCH 2024-04-01
Series:Advanced Energy & Sustainability Research
Subjects:
Online Access:https://doi.org/10.1002/aesr.202300201
_version_ 1797220351239782400
author Sri Hari Bharath Vinoth Kumar
Ruslan Muydinov
Natalia Maticiuc
Nivin Alktash
Marin Rusu
Bertwin Bilgrim Otto Seibertz
Hans Köbler
Antonio Abate
Thomas Unold
Iver Lauermann
Bernd Szyszka
author_facet Sri Hari Bharath Vinoth Kumar
Ruslan Muydinov
Natalia Maticiuc
Nivin Alktash
Marin Rusu
Bertwin Bilgrim Otto Seibertz
Hans Köbler
Antonio Abate
Thomas Unold
Iver Lauermann
Bernd Szyszka
author_sort Sri Hari Bharath Vinoth Kumar
collection DOAJ
description Nickel oxide (NiO1+δ) is a versatile material used in various fields such as optoelectronics, spintronics, electrochemistry, and catalysis which is prepared with a wide range of deposition methods. Herein, for the deposition of NiO1+δ films, the reactive gas flow sputtering (GFS) process using a metallic Ni hollow cathode is developed. This technique is distinct and has numerous advantages compared to conventional sputtering methods. The NiO1+δ films are sputtered at low temperatures (100 ºC) for various oxygen partial pressures during the GFS process. Additionally, Cu‐incorporated NiO1+δ (Cu x Ni1−x O1+δ) films are obtained with 5 and 8 at% Cu. The thin films of NiO1+δ are characterized and evaluated as a hole‐transporting layer (HTL) in perovskite solar cells (PSCs). The NiO1+δ devices are benchmarked against state‐of‐the‐art self‐assembled monolayers (SAM) ([2‐(3,6‐dimethoxy‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (also known as MeO2PACz)‐based PSCs. The best‐performing NiO1+δ PSC achieves an efficiency (η) of ≈16% without a passivation layer at the HTL interface and demonstrates better operational stability compared to the SAM device. The findings suggest that further optimization of GFS NiO1+δ devices can lead to higher‐performing and more stable PSCs.
first_indexed 2024-04-24T12:48:09Z
format Article
id doaj.art-a7930723beee4189b8b353d2c84caec3
institution Directory Open Access Journal
issn 2699-9412
language English
last_indexed 2024-04-24T12:48:09Z
publishDate 2024-04-01
publisher Wiley-VCH
record_format Article
series Advanced Energy & Sustainability Research
spelling doaj.art-a7930723beee4189b8b353d2c84caec32024-04-06T12:20:45ZengWiley-VCHAdvanced Energy & Sustainability Research2699-94122024-04-0154n/an/a10.1002/aesr.202300201Hollow Cathode Gas Flow Sputtering of Nickel Oxide Thin Films for Hole‐Transport Layer Application in Perovskite Solar CellsSri Hari Bharath Vinoth Kumar0Ruslan Muydinov1Natalia Maticiuc2Nivin Alktash3Marin Rusu4Bertwin Bilgrim Otto Seibertz5Hans Köbler6Antonio Abate7Thomas Unold8Iver Lauermann9Bernd Szyszka10Technology for Thin‐Film Devices Institute of High‐Frequency and Semiconductor System Technologies, Faculty IV Technische Universität Berlin Einsteinufer 25 Berlin 10587 GermanyTechnology for Thin‐Film Devices Institute of High‐Frequency and Semiconductor System Technologies, Faculty IV Technische Universität Berlin Einsteinufer 25 Berlin 10587 GermanyCompetence Center Photovoltaics (PVcomB) Helmholtz‐Zentrum Berlin für Materialien und Energie Schwarzschildstraße 3 Berlin 12489 GermanyTechnology for Thin‐Film Devices Institute of High‐Frequency and Semiconductor System Technologies, Faculty IV Technische Universität Berlin Einsteinufer 25 Berlin 10587 GermanyDepartment Structure and Dynamics of Energy Materials Helmholtz‐Zentrum Berlin für Materialien und Energie Lise‐Meitner Campus Hahn‐Meitner‐Platz 1 Berlin 14109 GermanyTechnology for Thin‐Film Devices Institute of High‐Frequency and Semiconductor System Technologies, Faculty IV Technische Universität Berlin Einsteinufer 25 Berlin 10587 GermanyDepartment Novel Materials and Interfaces for Photovoltaic Solar Cells Helmholtz‐Zentrum Berlin für Materialien und Energie Kekuléstraße 5 Berlin 12489 GermanyDepartment Novel Materials and Interfaces for Photovoltaic Solar Cells Helmholtz‐Zentrum Berlin für Materialien und Energie Kekuléstraße 5 Berlin 12489 GermanyDepartment Structure and Dynamics of Energy Materials Helmholtz‐Zentrum Berlin für Materialien und Energie Lise‐Meitner Campus Hahn‐Meitner‐Platz 1 Berlin 14109 GermanyCompetence Center Photovoltaics (PVcomB) Helmholtz‐Zentrum Berlin für Materialien und Energie Schwarzschildstraße 3 Berlin 12489 GermanyTechnology for Thin‐Film Devices Institute of High‐Frequency and Semiconductor System Technologies, Faculty IV Technische Universität Berlin Einsteinufer 25 Berlin 10587 GermanyNickel oxide (NiO1+δ) is a versatile material used in various fields such as optoelectronics, spintronics, electrochemistry, and catalysis which is prepared with a wide range of deposition methods. Herein, for the deposition of NiO1+δ films, the reactive gas flow sputtering (GFS) process using a metallic Ni hollow cathode is developed. This technique is distinct and has numerous advantages compared to conventional sputtering methods. The NiO1+δ films are sputtered at low temperatures (100 ºC) for various oxygen partial pressures during the GFS process. Additionally, Cu‐incorporated NiO1+δ (Cu x Ni1−x O1+δ) films are obtained with 5 and 8 at% Cu. The thin films of NiO1+δ are characterized and evaluated as a hole‐transporting layer (HTL) in perovskite solar cells (PSCs). The NiO1+δ devices are benchmarked against state‐of‐the‐art self‐assembled monolayers (SAM) ([2‐(3,6‐dimethoxy‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (also known as MeO2PACz)‐based PSCs. The best‐performing NiO1+δ PSC achieves an efficiency (η) of ≈16% without a passivation layer at the HTL interface and demonstrates better operational stability compared to the SAM device. The findings suggest that further optimization of GFS NiO1+δ devices can lead to higher‐performing and more stable PSCs.https://doi.org/10.1002/aesr.202300201gas flow sputteringhollow cathodehybrid perovskite solar cellsnickel oxidep‐type transparent conducting oxides (TCO)
spellingShingle Sri Hari Bharath Vinoth Kumar
Ruslan Muydinov
Natalia Maticiuc
Nivin Alktash
Marin Rusu
Bertwin Bilgrim Otto Seibertz
Hans Köbler
Antonio Abate
Thomas Unold
Iver Lauermann
Bernd Szyszka
Hollow Cathode Gas Flow Sputtering of Nickel Oxide Thin Films for Hole‐Transport Layer Application in Perovskite Solar Cells
Advanced Energy & Sustainability Research
gas flow sputtering
hollow cathode
hybrid perovskite solar cells
nickel oxide
p‐type transparent conducting oxides (TCO)
title Hollow Cathode Gas Flow Sputtering of Nickel Oxide Thin Films for Hole‐Transport Layer Application in Perovskite Solar Cells
title_full Hollow Cathode Gas Flow Sputtering of Nickel Oxide Thin Films for Hole‐Transport Layer Application in Perovskite Solar Cells
title_fullStr Hollow Cathode Gas Flow Sputtering of Nickel Oxide Thin Films for Hole‐Transport Layer Application in Perovskite Solar Cells
title_full_unstemmed Hollow Cathode Gas Flow Sputtering of Nickel Oxide Thin Films for Hole‐Transport Layer Application in Perovskite Solar Cells
title_short Hollow Cathode Gas Flow Sputtering of Nickel Oxide Thin Films for Hole‐Transport Layer Application in Perovskite Solar Cells
title_sort hollow cathode gas flow sputtering of nickel oxide thin films for hole transport layer application in perovskite solar cells
topic gas flow sputtering
hollow cathode
hybrid perovskite solar cells
nickel oxide
p‐type transparent conducting oxides (TCO)
url https://doi.org/10.1002/aesr.202300201
work_keys_str_mv AT sriharibharathvinothkumar hollowcathodegasflowsputteringofnickeloxidethinfilmsforholetransportlayerapplicationinperovskitesolarcells
AT ruslanmuydinov hollowcathodegasflowsputteringofnickeloxidethinfilmsforholetransportlayerapplicationinperovskitesolarcells
AT nataliamaticiuc hollowcathodegasflowsputteringofnickeloxidethinfilmsforholetransportlayerapplicationinperovskitesolarcells
AT nivinalktash hollowcathodegasflowsputteringofnickeloxidethinfilmsforholetransportlayerapplicationinperovskitesolarcells
AT marinrusu hollowcathodegasflowsputteringofnickeloxidethinfilmsforholetransportlayerapplicationinperovskitesolarcells
AT bertwinbilgrimottoseibertz hollowcathodegasflowsputteringofnickeloxidethinfilmsforholetransportlayerapplicationinperovskitesolarcells
AT hanskobler hollowcathodegasflowsputteringofnickeloxidethinfilmsforholetransportlayerapplicationinperovskitesolarcells
AT antonioabate hollowcathodegasflowsputteringofnickeloxidethinfilmsforholetransportlayerapplicationinperovskitesolarcells
AT thomasunold hollowcathodegasflowsputteringofnickeloxidethinfilmsforholetransportlayerapplicationinperovskitesolarcells
AT iverlauermann hollowcathodegasflowsputteringofnickeloxidethinfilmsforholetransportlayerapplicationinperovskitesolarcells
AT berndszyszka hollowcathodegasflowsputteringofnickeloxidethinfilmsforholetransportlayerapplicationinperovskitesolarcells