An ultraviolet-driven rescue pathway for oxidative stress to eye lens protein human gamma-D crystallin

Abstract Human gamma-D crystallin (HGD) is a major constituent of the eye lens. Aggregation of HGD contributes to cataract formation, the leading cause of blindness worldwide. It is unique in its longevity, maintaining its folded and soluble state for 50-60 years. One outstanding question is the str...

Full description

Bibliographic Details
Main Authors: Jake A. Hill, Yvonne Nyathi, Sam Horrell, David von Stetten, Danny Axford, Robin L. Owen, Godfrey S. Beddard, Arwen R. Pearson, Helen M. Ginn, Briony A. Yorke
Format: Article
Language:English
Published: Nature Portfolio 2024-04-01
Series:Communications Chemistry
Online Access:https://doi.org/10.1038/s42004-024-01163-w
_version_ 1797209493550923776
author Jake A. Hill
Yvonne Nyathi
Sam Horrell
David von Stetten
Danny Axford
Robin L. Owen
Godfrey S. Beddard
Arwen R. Pearson
Helen M. Ginn
Briony A. Yorke
author_facet Jake A. Hill
Yvonne Nyathi
Sam Horrell
David von Stetten
Danny Axford
Robin L. Owen
Godfrey S. Beddard
Arwen R. Pearson
Helen M. Ginn
Briony A. Yorke
author_sort Jake A. Hill
collection DOAJ
description Abstract Human gamma-D crystallin (HGD) is a major constituent of the eye lens. Aggregation of HGD contributes to cataract formation, the leading cause of blindness worldwide. It is unique in its longevity, maintaining its folded and soluble state for 50-60 years. One outstanding question is the structural basis of this longevity despite oxidative aging and environmental stressors including ultraviolet radiation (UV). Here we present crystallographic structures evidencing a UV-induced crystallin redox switch mechanism. The room-temperature serial synchrotron crystallographic (SSX) structure of freshly prepared crystallin mutant (R36S) shows no post-translational modifications. After aging for nine months in the absence of light, a thiol-adduct (dithiothreitol) modifying surface cysteines is observed by low-dose SSX. This is shown to be UV-labile in an acutely light-exposed structure. This suggests a mechanism by which a major source of crystallin damage, UV, may also act as a rescuing factor in a finely balanced redox system.
first_indexed 2024-04-24T09:55:35Z
format Article
id doaj.art-a7a4539ed52244a9845ffd7debe82e95
institution Directory Open Access Journal
issn 2399-3669
language English
last_indexed 2024-04-24T09:55:35Z
publishDate 2024-04-01
publisher Nature Portfolio
record_format Article
series Communications Chemistry
spelling doaj.art-a7a4539ed52244a9845ffd7debe82e952024-04-14T11:09:44ZengNature PortfolioCommunications Chemistry2399-36692024-04-01711810.1038/s42004-024-01163-wAn ultraviolet-driven rescue pathway for oxidative stress to eye lens protein human gamma-D crystallinJake A. Hill0Yvonne Nyathi1Sam Horrell2David von Stetten3Danny Axford4Robin L. Owen5Godfrey S. Beddard6Arwen R. Pearson7Helen M. Ginn8Briony A. Yorke9School of Chemistry and Biosciences, University of BradfordFaculty of Biological Sciences, University of LeedsDiamond Light Source Ltd, Harwell Science and Innovation CampusEuropean Molecular Biology LaboratoryDiamond Light Source Ltd, Harwell Science and Innovation CampusDiamond Light Source Ltd, Harwell Science and Innovation CampusSchool of Chemistry, University of LeedsHARBOR, Institute for Nanostructure and Solid State PhysicsHARBOR, Institute for Nanostructure and Solid State PhysicsSchool of Chemistry, University of LeedsAbstract Human gamma-D crystallin (HGD) is a major constituent of the eye lens. Aggregation of HGD contributes to cataract formation, the leading cause of blindness worldwide. It is unique in its longevity, maintaining its folded and soluble state for 50-60 years. One outstanding question is the structural basis of this longevity despite oxidative aging and environmental stressors including ultraviolet radiation (UV). Here we present crystallographic structures evidencing a UV-induced crystallin redox switch mechanism. The room-temperature serial synchrotron crystallographic (SSX) structure of freshly prepared crystallin mutant (R36S) shows no post-translational modifications. After aging for nine months in the absence of light, a thiol-adduct (dithiothreitol) modifying surface cysteines is observed by low-dose SSX. This is shown to be UV-labile in an acutely light-exposed structure. This suggests a mechanism by which a major source of crystallin damage, UV, may also act as a rescuing factor in a finely balanced redox system.https://doi.org/10.1038/s42004-024-01163-w
spellingShingle Jake A. Hill
Yvonne Nyathi
Sam Horrell
David von Stetten
Danny Axford
Robin L. Owen
Godfrey S. Beddard
Arwen R. Pearson
Helen M. Ginn
Briony A. Yorke
An ultraviolet-driven rescue pathway for oxidative stress to eye lens protein human gamma-D crystallin
Communications Chemistry
title An ultraviolet-driven rescue pathway for oxidative stress to eye lens protein human gamma-D crystallin
title_full An ultraviolet-driven rescue pathway for oxidative stress to eye lens protein human gamma-D crystallin
title_fullStr An ultraviolet-driven rescue pathway for oxidative stress to eye lens protein human gamma-D crystallin
title_full_unstemmed An ultraviolet-driven rescue pathway for oxidative stress to eye lens protein human gamma-D crystallin
title_short An ultraviolet-driven rescue pathway for oxidative stress to eye lens protein human gamma-D crystallin
title_sort ultraviolet driven rescue pathway for oxidative stress to eye lens protein human gamma d crystallin
url https://doi.org/10.1038/s42004-024-01163-w
work_keys_str_mv AT jakeahill anultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT yvonnenyathi anultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT samhorrell anultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT davidvonstetten anultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT dannyaxford anultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT robinlowen anultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT godfreysbeddard anultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT arwenrpearson anultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT helenmginn anultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT brionyayorke anultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT jakeahill ultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT yvonnenyathi ultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT samhorrell ultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT davidvonstetten ultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT dannyaxford ultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT robinlowen ultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT godfreysbeddard ultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT arwenrpearson ultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT helenmginn ultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin
AT brionyayorke ultravioletdrivenrescuepathwayforoxidativestresstoeyelensproteinhumangammadcrystallin