Model Identification and Trajectory Tracking Control for Vector Propulsion Unmanned Surface Vehicles

To promote the development of military and civilian applications for marine technology, more and more scientific research around the world has begun to develop unmanned surface vehicles (USVs) technology with advanced control capabilities. This paper establishes and identifies the model of vector pr...

Full description

Bibliographic Details
Main Authors: Xiaojie Sun, Guofeng Wang, Yunsheng Fan
Format: Article
Language:English
Published: MDPI AG 2019-12-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/1/22
Description
Summary:To promote the development of military and civilian applications for marine technology, more and more scientific research around the world has begun to develop unmanned surface vehicles (USVs) technology with advanced control capabilities. This paper establishes and identifies the model of vector propulsion USV, which is widely used at present. After analyzing its actuator distribution, we consider that the more realistic vessel model should be an incomplete underactuated system. For this system, a virtual control point method is adopted and an adaptive sliding mode trajectory tracking controller with neural network minimum learning parameter (NNMLP) theory is designed. Finally, in the simulation experiment, the thruster speed and propulsion angle are used as the inputs of the controller, and the linear and circular trajectory tracking tests are carried out considering the delay effect of the actuator, system uncertainty, and external disturbance. The results show that the proposed tracking control framework is reasonable.
ISSN:2079-9292