On (weakly) precious rings associated to central polynomials
Let R be an associative ring with identity and let g(x) be a fixed polynomial over the center of R. We define R to be (weakly) g(x)-precious if for every element a∈R, there are a zero s of g(x), a unit u and a nilpotent b such that (a=±s+u+b) a=s+u+b. In this paper, we investigate many examples and...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2018-04-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/31398 |