Optimal density of bacterial cells.

A substantial fraction of the bacterial cytosol is occupied by catalysts and their substrates. While a higher volume density of catalysts and substrates might boost biochemical fluxes, the resulting molecular crowding can slow down diffusion, perturb the reactions' Gibbs free energies, and redu...

Full description

Bibliographic Details
Main Authors: Tin Yau Pang, Martin J Lercher
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-06-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1011177
Description
Summary:A substantial fraction of the bacterial cytosol is occupied by catalysts and their substrates. While a higher volume density of catalysts and substrates might boost biochemical fluxes, the resulting molecular crowding can slow down diffusion, perturb the reactions' Gibbs free energies, and reduce the catalytic efficiency of proteins. Due to these tradeoffs, dry mass density likely possesses an optimum that facilitates maximal cellular growth and that is interdependent on the cytosolic molecule size distribution. Here, we analyze the balanced growth of a model cell, accounting systematically for crowding effects on reaction kinetics. Its optimal cytosolic volume occupancy depends on the nutrient-dependent resource allocation into large ribosomal vs. small metabolic macromolecules, reflecting a tradeoff between the saturation of metabolic enzymes, favoring larger occupancies with higher encounter rates, and the inhibition of the ribosomes, favoring lower occupancies with unhindered diffusion of tRNAs. Our predictions across growth rates are quantitatively consistent with the experimentally observed reduction in volume occupancy on rich media compared to minimal media in E. coli. Strong deviations from optimal cytosolic occupancy only lead to minute reductions in growth rate, which are nevertheless evolutionarily relevant due to large bacterial population sizes. In sum, cytosolic density variation in bacterial cells appears to be consistent with an optimality principle of cellular efficiency.
ISSN:1553-734X
1553-7358